AI
293 Inhalte
Entdecken Sie unser Archiv zu tiefgehenden Inhalte zum Thema AI.
Die Anzahl von Publikationen zu Computer Vision, Neuro-Linguistischer Programmierung (NLP) oder Reinforcement Learning ist heutzutage gewaltig. Dabei widmen sich die meisten ausschließlich dem Training. Doch oft müssen Data Scientists auch beim Betrieb ihrer Modelle mitwirken. Dafür braucht es einen pragmatischen und unaufwändigen Weg.
Ein Gespräch über den Stand der Forschung im internationalen Vergleich, die Frage, wie wichtig die Transparenz von KI-Entscheidungen ist, sowie künftige Einsatzfelder.
Wenn Menschen die Entscheidungen von Künstlicher Intelligenz nicht verstehen und nicht nachvollziehen können, vertrauen sie ihnen auch nicht – sei es bei der Bewilligung eines Kreditantrags oder beim autonomen Fahren. Die Entscheidungen und Handlungen der Modelle müssen deshalb transparent und erklärbar sein.
Künstliche Intelligenz trifft traditionelle Industrie: In der Stahlproduktion unterliegt der erzeugte Stahl einer kontinuierlichen Qualitätssicherung. Der Grobblechhersteller Dillinger setzt dabei ein auf einem Grafikprozessor laufendes neuronales Netz ein. Es unterstützt die bildanalytische Bewertung der Beschaffenheit des Stahls.
Wie findet ein Unternehmen die passenden Expertinnen und Experten im eigenen Haus, wenn es sie für bestimmte Aufgaben schnell braucht? Mit dieser Herausforderung hatte es auch die iteratec GmbH zu tun – und entwickelte deshalb eine KI-basierte Suchmaschine, die das zuverlässige und schnelle Finden von Mitarbeiter-Skills ermöglicht.